Determination of absolute hydrogen peroxide concentration by spectrophotometric method

There is considerable current interest in oxidative stress applicable to humans. One important reactive oxygen species generated in the body is H_2O_2. It was reported that substantial amount of H_2O_2 was excreted in urine1-3, even in neonates4. Therefore, it was hypothesized earlier that measurement of H_2O_2, especially in urine, could be a valuable biomarker for the generation of H_2O_2 and the degree of oxidative stress in vitro5,6.

The FOX-2 method has been used earlier to detect H_2O_2 in urine7,8. The basic principle of this method is oxidation of ferrous ions by the sample oxidizing agents to ferric ions, which bind with xylénol orange to give a coloured complex8,9. Gupta et al.10 had developed the basic method in 1975 which was later on elaborated by Wolf and coworkers11. Though the method has been used to detect H_2O_2, hydroperoxides can also oxidize ferrous ions to ferric ions. Therefore, this method has been used successfully to measure plasma hydroperoxide concentration9,10,12. H_2O_2 is possibly absent in normal plasma due to the presence of its degradative systems like catalase13.

In the FOX-2 method 90 µl of sample, 10 µl of methanol and 900 µl of xylénol orange (Sigma Chemical Co.) reagent11 containing ferrous ions were added successively and absorbance was noted at 560 nm (ref. 3). Therefore, the classical FOX-2 method measured any substance that was converting Fe^{2+} to Fe^{3+} irrespective of their chemical nature. Ten µl of methanol was replaced by 10 µl of 10 mM triphenylphosphine earlier to reduce plasma hydroperoxides, and this modification of FOX-2 was used to measure plasma hydroperoxide concentration more accurately5. In this correspondence we have modified the method by performing the assay in the presence or absence of 10 µl of catalase. This was done by replacement of 10 µl of methanol with 10 µl of catalase solution to measure absolute H_2O_2 concentration in biological samples. Catalase reagent was prepared by dissolving 1 mg of catalase powder (22,000 U/mg from Sigma) in 10 ml of 25 mM phosphate buffer pH 7.0, containing 2 mg/ml bovine serum albumin and stored in aliquots at −20°C.

Catalase is an antioxidant enzyme catalysing the following reactions13.

- Reaction A – $2H_2O_2 \rightarrow 2H_2O + O_2$.
- Reaction B – ROOH + AH\textsubscript{2} → ROH + A + H$_2$O$_2$.

(\textit{AH}$_2$ is a hydrogen donor like methanol.)

For both the reactions catalase–H_2O_2 complex was formed first15. Reaction A proceeded exceedingly rapidly with a rate constant $k=10^7$/mol/s (refs 15 and 16), whereas the rate of reaction B was quite slow, with $k=10^2$-103/mol/s (refs 15 and 16). Therefore, the second reaction is insignificant when compared to the first. Moreover, in vitro many of the hydrogen donors act as inhibitors of catalase15. Hence replacement of 10 µl of methanol with 10 µl of catalase solution definitely makes the FOX-2 assay more specific for H_2O_2 measurement. The absolute H_2O_2 concentration is calculated from the absorbance difference of FOX-2 and modified FOX-2. The standard plot of H_2O_2 was prepared fresh each time and concentration of H_2O_2 stock solution was checked using molar extinction coefficient of H_2O_2 at 240 nm as 43.6 M$^{-1}$ cm$^{-1}$ (ref. 14).

Urines were sampled from healthy human volunteers. Cerebrospinal fluid (CSF) and ascitic fluid were taken from Clinical Biochemistry Division, Kasturba Medical College, Manipal. Samples were examined within 30 min of collection. Morning fasting samples were taken from normal subjects. Smokers were excluded from the study. All reagents were of analytical grade. All glasswares were cleaned with warm concentrated nitric acid15 and deionized water before an experiment.

Recovery experiments were done with urine, CSF and ascitic fluid to check whether there was an increase in absorbance with increasing concentration of H_2O_2 (Figure 1). Biological fluids can contain substances that can degrade H_2O_2. If such H_2O_2 degradative systems like catalase, glutathione peroxidase or free haeme exist, then residual H_2O_2 concentration in any biological fluid is far from reality. Recovery experiments were designed to understand the presence of H_2O_2 degradative systems in biological fluids like urine, CSF and ascitic fluid. These experiments with normal human urine, CSF and ascitic fluid showed linear and gradual increase in absorbance as H_2O_2 concentration was increased, signifying the absence of H_2O_2 degradative systems in these biological fluids. We have studied the recovery percentage of H_2O_2 in normal human urine which is 100%, signifying the complete absence of H_2O_2 degradative systems in this biological fluid.

It was reported earlier that urine of normal human subjects contains measurable amount of H_2O_2 (ref. 7). This experiment was a repetition of these studies with and without modification. H_2O_2 concentration in urine of normal human volunteers was determined by FOX-2 and modified FOX-2 method (Table 1). The results showed that normal human urine contains substantial amounts of H_2O_2. The values with the modified FOX-2 method were lower than the original FOX-2 method.
Table 1. Estimation of H$_2$O$_2$ concentration in urine of normal human volunteers by FOX-2 and modified FOX-2 methods. FOX-2 assay was performed as in Figure 1. Concentrations of H$_2$O$_2$ obtained from standard plots are given in column (a). Modified FOX-2 assay was done by replacing 10 μl of methanol with 10 μl of catalase (22 units). The absorbance value obtained was subtracted from the absorbance value of the classical FOX-2 method. The value obtained was used to calculate the concentration of H$_2$O$_2$ from standard plots and is given in column (b).

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>FOX-2 method (a)</th>
<th>Modified FOX-2 method (b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>111.1</td>
<td>71.1</td>
</tr>
<tr>
<td>21</td>
<td>104.4</td>
<td>81.1</td>
</tr>
<tr>
<td>22</td>
<td>137.8</td>
<td>86.2</td>
</tr>
<tr>
<td>23</td>
<td>53.3</td>
<td>67.8</td>
</tr>
<tr>
<td>22</td>
<td>80.0</td>
<td>60.7</td>
</tr>
<tr>
<td>19</td>
<td>75.5</td>
<td>59.6</td>
</tr>
<tr>
<td>26</td>
<td>101.1</td>
<td>82.9</td>
</tr>
<tr>
<td>21</td>
<td>113.3</td>
<td>70.0</td>
</tr>
<tr>
<td>25</td>
<td>83.3</td>
<td>83.3</td>
</tr>
<tr>
<td>23</td>
<td>80.0</td>
<td>75.0</td>
</tr>
<tr>
<td>21</td>
<td>126.7</td>
<td>86.6</td>
</tr>
<tr>
<td>24</td>
<td>38.9</td>
<td>88.8</td>
</tr>
<tr>
<td>20</td>
<td>74.4</td>
<td>52.0</td>
</tr>
<tr>
<td>26</td>
<td>94.4</td>
<td>72.0</td>
</tr>
<tr>
<td>22</td>
<td>77.8</td>
<td>68.2</td>
</tr>
</tbody>
</table>

Previously, FOX-2 method was used to detect urinary H$_2$O$_2$ (ref. 3). The concentration of H$_2$O$_2$ detected by FOX-2 method was compared with that by the oxygen-electrode method. The oxygen-electrode method gave significantly lesser value than FOX-2 method1. Here, H$_2$O$_2$ detected by modified FOX-2 method was always less than that detected by the original version of FOX-2 method. The oxygen-electrode measures H$_2$O$_2$ depending upon the catalytic activity of catalase1. Modified FOX-2 also measures H$_2$O$_2$ depending upon the catalytic activity of catalase. Therefore, catalase modification of FOX-2 enables us to get an absolute H$_2$O$_2$ concentration in biological samples.

The recovery experiments with CSF, ascitic fluid and urine gave linear plots (Figure 1). Hence H$_2$O$_2$ degradative system was not present in these biological samples and its measurement was possible in these biological fluids by this method. Among these biological fluids, we have determined H$_2$O$_2$ concentration in normal human urine.

In earlier reports where urinary H$_2$O$_2$ was reported in normal subjects, a value as high as 100 μM was noted, and most of the samples contained more than 10 μM of H$_2$O$_2$ (refs 3 and 7). But by modification of the FOX-2 method, none of our samples from normal human volunteers was there more than 100 μM H$_2$O$_2$. Using the original version of FOX-2 method, six samples showed a value of more than 100 μM. Therefore, we infer that the value obtained by the modified version was the correct value of H$_2$O$_2$ concentration because of replacement of methanol by catalase. Moreover, in the previous studies spot-random samples of urine were collected without taking into consideration any dietary history17. It is possible that like many other biochemical parameters, H$_2$O$_2$ excretion varies according to circadian rhythm. And, it is proved that diet affects H$_2$O$_2$ concentration in biological samples$^{17, 18}$. Hence we have estimated H$_2$O$_2$ concentration in normal human urine collected in the morning in fasting state. This mode of collection of samples may have affected our decreased value in the modified version of FOX-2. Any oxidative stress can alter H$_2$O$_2$ concentration; therefore, we have estimated H$_2$O$_2$ concentration in urine collected from normal individuals, excluding smokers as smoking is a proved case of oxidative stress$^{19, 20}$. We conclude that in basal conditions, urinary H$_2$O$_2$ is substantially high, but may not be as high as 100 μM.

Received 20 August 2002; revised accepted 30 September 2002

DIBYAJIYOTI BANERJEE*
P. AMAR KUMAR
BHARAT KUMAR
U. K. MADhusoodanan
SUDHAKAR NAYAK
JOSE JACOB

Department of Biochemistry, Kasturba Medical College, Manipal 576 119, India
*For correspondence, e-mail: kjosejacob@yahoo.com