Mitochondrial DNA diversity among five tribal populations of southern India

Deepa Edwin¹, H. Vishwanathan², Sangita Roy³, M. V. Usha Rani⁴, and Partha P. Majumder⁵

¹Division of Genetics, Department of Environmental Sciences, Bharathiar University, Coimbatore 641 046, India
²Human Genetics and Genomics Division, Indian Institute of Chemical Biology, Kolkata 700 032, India
³Anthropology and Human Genetics Unit, Indian Statistical Institute, Kolkata 700 035, India

DNA samples from 160 unrelated individuals belonging to five Dravidian tribal populations of southern India were analysed for ten mitochondrial DNA (mtDNA) restriction site polymorphisms (RSPs) and one insertion/deletion polymorphism. There is extensive sharing of mtDNA haplotypes among all the tribal populations studied, indicating that there was a small female founding population in India. The 9-bp deletion detected was observed only in the Kadar population with a low frequency. The Asian-specific haplogroup M is found at a higher frequency in all the populations, thus supporting the hypothesis that this haplogroup arose in India and was carried to Africa from India. Haplogroup U is also found in all the populations and it is consistent with the theory that Dravidian-speaking populations were more widespread in India and that the Aryan-speakers pushed them to their present habitat.

CONTEMPORARY ethnic populations of India manifest a great deal of biological and cultural variability. Based on cultural patterns, the tribal populations of India are clearly distinguished from the non-tribal groups, such as the populations belonging to the Hindu caste fold. The tribes constitute about 8.08% (2001 census) of the total Indian population. They are considered to be the original inhabitants of India. Tribals may represent relic populations of unknown origin, but potentially of great genetic interest. The origins and migrational histories of the tribal populations of the Indian subcontinent are not clearly understood. Some tribal populations of southern India bear many Negroid physical characteristics, and may therefore be the representatives arriving in India on an ancient wave of out-of-Africa migration. Most ethnic populations of southern India are linguistically Dravidian. Some researchers have proposed that the contemporary Dravidian-speaking tribes of southern and central India may be descendants of the original inhabitants of the Indian subcontinent, although we have recently provided genomic evidence that the Dravidian-speaking tribes may have arrived in India after the Austro-Asiatic-speaking tribes.

*For correspondence. (e-mail: malla_drur@yahoo.com)
Considerable insight into the peopling of India has been derived from past studies based on blood group, serum protein and red-cell enzyme polymorphisms. Studies on genomic polymorphisms from defined ethnic groups are still scanty. The emerging molecular genetic data will be useful to reconstruct the human evolution in India. In this communication, we report the findings of our study on mitochondrial DNA (mtDNA) markers among five tribal populations of India. The study was undertaken with a view to partially reconstruct the population histories of the Dravidian-speaking tribal populations of southern India. The mtDNA molecule is maternally inherited as a single locus because of lack of recombination, yet it is extremely polymorphic and therefore highly informative for discriminating among populations. The mutation rate of human mtDNA is ten times higher than that of human nuclear DNA and the lack of recombination allows for mtDNA types to be related as matriline.

A 9-bp deletion in the mitochondrial genome has been useful for examining genetic relationships among human populations. The 9-bp deletion is a length variant in the intergenic region between the cytochrome-c oxidase subunit II and the mitochondrial tRNA for lysine (COII/tRNA_{Lys}). The deletion motif results from the loss of one of two CCCCCTCTA tandem repeats and it was originally identified as an ‘Asian-specific’ polymorphism.

Blood samples (5–10 ml by venipuncture) were collected with prior informed consent from individuals of five tribal groups belonging to the Dravidian linguistic family. The tribal groups were: Kadar (n = 40), Paniya (n = 30), Irula (n = 30), Kota (n = 30) and Kurumba (n = 30). These tribal communities inhabit the southern regions of India. Further details about these populations are provided in Table 1.

DNA was isolated from each individual using a standard protocol. Each DNA sample was screened for ten mtDNA restriction site polymorphisms (RSPs) and one insertion/deletion polymorphism (IDP). The RSPs screened were <i>Hae</i>_{III} gain at nt 663, <i>Hpa</i>_{II} gain at nt 3592, <i>Alu</i> gain at nt 5176, <i>Alu</i> gain at nt 7025, <i>DdeI</i> and <i>Alu</i> gains at nt 10394 and 10397 respectively, <i>HinfI</i> gain at nt 12308, <i>HincII</i> loss at nt 13259, <i>Alu</i> gain at nt 13262, <i>HaeIII</i> gain at nt 16517 and the IDP screened was the COII/tRNA_{Lys} intergenic 9-bp deletion that occurs between nt 8272 and 8289, which has been used as a marker for populations of Asian and Asian-derived origins such as Polynesians and Native Americans. All the sites were chosen such that individuals could be classified into different haplogroups that are most relevant for Indian populations. mtDNA RSP analysis were performed using standard primers and protocols.

In Table 2, the allele frequencies are presented separately for each of the five populations. A subset of these data has already been published by us. While <i>DdeI</i>
(10394) and AluI (10397) sites were polymorphic in all the populations, the HpaI (3592), AluI (5176) and AluI (7025) were monomorphic in all the populations analysed. The 9-bp COII/tRNA^Lys^ intergenic length mutation was observed only in the Kadar population with a frequency of about 0.05%.

Eleven-locus haplotypes were constructed and their frequencies estimated in each population. A total of ten distinct haplotypes were observed among 160 individuals screened. The maximum number of haplotypes (7 of 10) was observed among the Kadar, while the Kotas harboured only 2 haplotypes. Frequencies of haplotypes in each study population, as also in the pooled sample are presented in Table 3. In the pooled data set, only one haplotype (00111101010) accounted for about 66% of all mtDNA molecules. It may therefore be inferred that this is the most ancient haplotype. It was found that only three of the ten distinct haplotypes were present at high frequencies, the remaining 7 haplotypes were present in small frequencies. One haplotype (00110001010) was found to be present in the Paniyas, Irulas, Kotas and the Kurumbas, while it was completely absent among the Kadors.

Based on the occurrence of mutations, mtDNA molecules have been classified into several haplogroups. The RFLP sites examined permit the classification of our data into the following haplogroups: Haplogroup A defined by the presence of HaeIII (663) site, B defined by the presence of DdeI (10394) and AluI (10397) sites, C defined by the presence of DdeI (10394) and AluI (10397) sites, M defined by the presence of DdeI (10394) and AluI (10397) sites, and U defined by the absence of the DdeI (10394) site and the presence of HinfI (12308) site, H defined by the absence of DdeI (10394) site and the presence of AluI (10397), and L defined by the presence of DdeI (10394) and the presence of HpaI (3592) sites.

The frequencies of the haplogroups in the study populations are given in Table 4. Asian (north) and Amerindians haplogroups A, B and D are absent among Kadar, Paniya, Irula and Kota. However haplogroup A is present only among Kurumbas, with a very low (3.3%) frequency. Haplogroup M was found to be the most frequent – 76.25% of the individuals in the pooled sample belonged to this haplogroup. The frequency of this haplogroup was found to be the lowest among the Irulas (53.3%) and highest among the Kotas (96.7%). Haplogroup U was also found to occur in all the populations except the Kotas, and the frequency of this haplogroup in the pooled sample was about (8.75%).

The early history of Indian populations is like a jigsaw puzzle with many missing pieces; however, there is enough anthropological and archaeological evidence to show that from time immemorial people of different ethnic stocks, cultures and languages entered India and

Table 3. mtDNA haplotypes based on ten restriction site and one insertion/deletion polymorphism in five tribal populations of South India

<table>
<thead>
<tr>
<th>Haplotype</th>
<th>Kadar (n = 40)</th>
<th>Paniyan (n = 30)</th>
<th>Irula (n = 30)</th>
<th>Kota (n = 30)</th>
<th>Kurumba (n = 30)</th>
<th>Total (n = 160)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01111001010</td>
<td>22</td>
<td>18</td>
<td>14</td>
<td>29</td>
<td>23</td>
<td>106</td>
</tr>
<tr>
<td>001100001010</td>
<td>55.0</td>
<td>60.0</td>
<td>46.66</td>
<td>96.66</td>
<td>76.66</td>
<td>66.25</td>
</tr>
<tr>
<td>0111101000</td>
<td>10</td>
<td>7</td>
<td>1</td>
<td>4</td>
<td>22</td>
<td>9</td>
</tr>
<tr>
<td>0011100100</td>
<td>3.33</td>
<td>23.33</td>
<td>3.33</td>
<td>13.33</td>
<td>13.75</td>
<td>13.75</td>
</tr>
<tr>
<td>0011001010</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0011001000</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0011100100</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>0011100010</td>
<td>10.0</td>
<td>3.33</td>
<td>3.33</td>
<td>3.33</td>
<td>3.33</td>
<td>3.12</td>
</tr>
<tr>
<td>0111000100</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0011100010</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>0011100101</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1011000101</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Order of loci: HaeIII nt 663, HpaI nt 3592, AluI nt 5176, AluI nt 7025, DdeI nt 10394, AluI nt 10397, HinfI nt 12308, HincII nt 13259, AluI nt 13262, HaeIII nt 16517, 9-bp deletion.

1. Presence of restriction site; 0, absence of restriction site.
contributed to the present-day gene pool of the subcontinent. Tribal populations, because of their long isolation, are well differentiated from the non-tribal communities. It is clear that the south Indian tribes form a large and heterogeneous population, made up mostly of relic populations, but perhaps also of later arrivals that were never totally absorbed into the Indian culture.

Ballinger et al. have proposed that the COII/tRNALys9-bp deletion originated in central China and spread to the southeast Asian populations and to coastal and island populations of the Pacific. In our study, only the Kadar population harboured the 9-bp deletion with a frequency of 0.05%. Earlier studies have also indicated that this 9-bp deletion is extremely rare in India. The Dravidian tribes were found to possess the haplogroup M at a higher frequency (63.75%) compared with the Austro-Asiatics and the Tibeto-Burman tribes. The comparison of our haplotype data with other tribal populations of India reveals interesting features. There is an extensive sharing of haplotypes across the ethnic groups; one haplotype (00111101010) was modal across all the population groups indicating the most ancient haplotype and therefore supporting the hypothesis proposed that there was a small female founding population in India.

The presence of DdeI (10394) AciI (10397) sites defined a specific haplogroup M. This haplogroup was originally identified in southeast Asian populations, but later shown to be an ancient marker in India, predating the migration of Indo-European speakers into India. Consistent with Roychoudhury et al., all tribal populations of south India were found to possess this haplogroup in high frequencies (53.3–96.7%). As the tribal populations are considered by most anthropologists to be indigenous groups, it indicates that the haplogroup M is an ancient haplogroup in India. Recently, Quintana-Murci et al. reported the presence of haplogroup M in Africa (Ethiopia) with a fairly high frequency (18%) and proposed that this haplogroup originated in Africa. On the contrary, Roychoudhury et al. showed that haplogroup M is ubiquitous throughout India and its high frequency possibly indicates that this haplogroup has arisen in India and was carried to Ethiopia. The high frequency of haplogroup M found in the south Indian tribal populations in the present study also supports this hypothesis.

Haplogroup U has been reported as the second most common haplogroup in Europe. Kivisild et al. have reported its presence in west Eurasian and Indian populations. Hence it may serve as a good marker for identifying Caucasoid admixture in Indian populations. However, it is also found at low frequencies in western and eastern African populations and therefore may have also been introduced into India and Africa. The presence of haplogroup U in south Indian tribal populations is rather interesting. It is consistent with the theory that Dravidian-speaking populations were more widespread in India and that the Aryan-speakers pushed them to their present habitat in southern India. However, this haplogroup may have been present among Dravidian-speakers even when they arrived in India with agriculture from the Fertile Crescent region. Further data on autosomal and Y chromosomal polymorphisms will provide information about early inhabitants of the Indian subcontinent.

Table 4. Frequencies (%) of various haplogroups in five tribal populations

<table>
<thead>
<tr>
<th>Population</th>
<th>A</th>
<th>C</th>
<th>M</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kadar</td>
<td>4</td>
<td>36</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Paniya</td>
<td>18</td>
<td>60</td>
<td>2</td>
<td>6.67</td>
</tr>
<tr>
<td>Irula</td>
<td>1</td>
<td>16</td>
<td>7</td>
<td>23.3</td>
</tr>
<tr>
<td>Kota</td>
<td>29</td>
<td>96.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kurumba</td>
<td>1</td>
<td>23</td>
<td>76.7</td>
<td></td>
</tr>
<tr>
<td>Pooled</td>
<td>0.625</td>
<td>5</td>
<td>72.65</td>
<td></td>
</tr>
</tbody>
</table>

Aeromagnetic data to probe the Dharwar craton

S. P. Anand and Mita Rajaram*

Indian Institute of Geomagnetism, Colaba, Mumbai 400 005, India

Degree-sheet aeromagnetic maps of Dharwar craton were digitized closely along contours and re-gridded at 2.5 km interval to obtain an image map, after removal of International Geomagnetic Reference Field. The total field anomaly and generated analytical signal maps confirm the division of Dharwar craton into western and eastern blocks, and are consistent with the several strike trends of the causative sources. The Chitradurga schist belt appears to divide the Dharwar craton into the western and eastern blocks. From the present study we find that the density of the anomalies in the Eastern Dharwar is greater than that in the Western Dharwar. This may be explained by either or a combination of the following: higher grade of metamorphic rocks in the Eastern Dharwar or the Eastern block may be uplifted with respect to the Western block with the characteristics of the deeper crustal layer now exposed due to erosion or presence of thick sedimentary sequence in the Western with volcanic in the Eastern.

THE Dharwar craton, named by Pichamuthu¹, is one of the oldest Precambrian terrains of the world preserving within its limit the geological history of a very ancient (3400 to 2600 Ma) continental crust. The Dharwar craton is well known for its granite–greenstone association and it extends over an area of 350,000 km², covering the states of Karnataka and part of Andhra Pradesh. It is delimited on the west by the present-day coastline and on the south and east by the dominantly Proterozoic high-grade. In the north it is bounded by the Bhima and Kaladgi basins and the Deccan volcanic province. Detailed geochemical and geophysical investigation of the granite–greenstone belts is important from the point of view of the reconstruction of the mineralization, tectonic history, grades of metamorphism, etc. of the Dharwar craton. Towards this end, the analysis of magnetic data can give a new perspective to probe the Dharwar craton.

Aeromagnetic degree-sheets up to 17°N were acquired from Geological Survey of India (GSI). These maps were re-digitized manually at 6′ (10 km) interval and processed, mainly to study the long-wavelength features. Initial results were published by Harikumar et al.². In this paper the authors delineate the orthopyroxene isograd, demarcating the NW–SE trending Dharwar block to the north and the E–W trending Southern Granulate Terrain (SGT) block to the south of it. The source rock of magnetic anomalies is charnockites in the SGT and mainly intrusives and iron-ore bodies in the Dharwar craton. With the availability of machine digitization, it is possible to have these analogue degree-sheets in digital format. Such a format is used for analysing these maps critically to derive more useful information regarding structural trends, position of faults, distribution of shallow or deep crystalline basement, and occurrence of volcanic rocks within the sedimentary region, etc. The study of the spatial distribution of magnetic field facilitates the understanding of the regional as well as the global tectonic features. A new set of fine-grid aeromagnetic data, digitized closely along contours, is presented that helps to delineate the structural elements and distribution of magnetic sources in the Dharwar craton and to throw light on the magnetic properties of the oldest greenstone belt.

To be able to appreciate the block structures, we have chosen to restrict the area of study from just south of orthopyroxene isograd (line that divides the high-grade granulites to the south); thus data are taken from 12 to 17°N and 74 to 81°E. This includes the Dharwar craton, the Cuddapah basin and a part of the Eastern Ghats block.

Dharwar craton is divided into Eastern, Kolar-type and Western Dharwar-type blocks distinguished by differences in the volcano-sedimentary supracrustals, magmatism, grades of metamorphism and temporal evolution. Isotopic age studies using K–Ar, Rb–Sr and Pb–Pb methods placed the Western Dharwar craton (3000 Ma) to be older than the Eastern block³ (2500–2600 Ma). Some workers⁴,⁵ believe that the Closepet granite massif marks the boundary between Eastern and Western Dharwar, while others⁶ are of the opinion that the eastern boundary fault of the Chitradurga basin demarcates the two. Various views are put forth regarding the evolution of Dhar-

*For correspondence. (e-mail: mita@iig.iigm.res.in)